extension | φ:Q→Aut N | d | ρ | Label | ID |
C42⋊(C2×C6) = C24.6A4 | φ: C2×C6/C1 → C2×C6 ⊆ Aut C42 | 16 | 12+ | C4^2:(C2xC6) | 192,1008 |
C42⋊2(C2×C6) = C2×C42⋊C6 | φ: C2×C6/C2 → C6 ⊆ Aut C42 | 24 | 6 | C4^2:2(C2xC6) | 192,1001 |
C42⋊3(C2×C6) = C2×C23.A4 | φ: C2×C6/C2 → C6 ⊆ Aut C42 | 12 | 6+ | C4^2:3(C2xC6) | 192,1002 |
C42⋊4(C2×C6) = C3×C42⋊C22 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 48 | 4 | C4^2:4(C2xC6) | 192,854 |
C42⋊5(C2×C6) = C3×D4⋊4D4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 24 | 4 | C4^2:5(C2xC6) | 192,886 |
C42⋊6(C2×C6) = C3×D4.9D4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 48 | 4 | C4^2:6(C2xC6) | 192,888 |
C42⋊7(C2×C6) = C3×C22.11C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 48 | | C4^2:7(C2xC6) | 192,1407 |
C42⋊8(C2×C6) = C3×C22.19C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 48 | | C4^2:8(C2xC6) | 192,1414 |
C42⋊9(C2×C6) = C3×C22.29C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 48 | | C4^2:9(C2xC6) | 192,1424 |
C42⋊10(C2×C6) = C3×C22.32C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 48 | | C4^2:10(C2xC6) | 192,1427 |
C42⋊11(C2×C6) = C3×D42 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 48 | | C4^2:11(C2xC6) | 192,1434 |
C42⋊12(C2×C6) = C3×D4⋊5D4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 48 | | C4^2:12(C2xC6) | 192,1435 |
C42⋊13(C2×C6) = C3×C22.45C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 48 | | C4^2:13(C2xC6) | 192,1440 |
C42⋊14(C2×C6) = C3×C22.54C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 48 | | C4^2:14(C2xC6) | 192,1449 |
C42⋊15(C2×C6) = C3×C24⋊C22 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 48 | | C4^2:15(C2xC6) | 192,1450 |
C42⋊16(C2×C6) = C22×C42⋊C3 | φ: C2×C6/C22 → C3 ⊆ Aut C42 | 24 | | C4^2:16(C2xC6) | 192,992 |
C42⋊17(C2×C6) = C6×C42⋊C2 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2:17(C2xC6) | 192,1403 |
C42⋊18(C2×C6) = C6×C42⋊2C2 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2:18(C2xC6) | 192,1417 |
C42⋊19(C2×C6) = C6×C4≀C2 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 48 | | C4^2:19(C2xC6) | 192,853 |
C42⋊20(C2×C6) = D4×C2×C12 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2:20(C2xC6) | 192,1404 |
C42⋊21(C2×C6) = C6×C4.4D4 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2:21(C2xC6) | 192,1415 |
C42⋊22(C2×C6) = C6×C4⋊1D4 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2:22(C2xC6) | 192,1419 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
C42.1(C2×C6) = C3×C42.C22 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.1(C2xC6) | 192,135 |
C42.2(C2×C6) = C3×C42.2C22 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 192 | | C4^2.2(C2xC6) | 192,136 |
C42.3(C2×C6) = C3×C4.D8 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.3(C2xC6) | 192,137 |
C42.4(C2×C6) = C3×C4.10D8 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 192 | | C4^2.4(C2xC6) | 192,138 |
C42.5(C2×C6) = C3×C4.6Q16 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 192 | | C4^2.5(C2xC6) | 192,139 |
C42.6(C2×C6) = C3×C42.6C22 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.6(C2xC6) | 192,857 |
C42.7(C2×C6) = C3×C8⋊9D4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.7(C2xC6) | 192,868 |
C42.8(C2×C6) = C3×SD16⋊C4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.8(C2xC6) | 192,873 |
C42.9(C2×C6) = C3×Q16⋊C4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 192 | | C4^2.9(C2xC6) | 192,874 |
C42.10(C2×C6) = C3×D8⋊C4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.10(C2xC6) | 192,875 |
C42.11(C2×C6) = C3×C8.26D4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 48 | 4 | C4^2.11(C2xC6) | 192,877 |
C42.12(C2×C6) = C3×D4.8D4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 48 | 4 | C4^2.12(C2xC6) | 192,887 |
C42.13(C2×C6) = C3×D4.10D4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 48 | 4 | C4^2.13(C2xC6) | 192,889 |
C42.14(C2×C6) = C3×C4⋊D8 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.14(C2xC6) | 192,892 |
C42.15(C2×C6) = C3×C4⋊SD16 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.15(C2xC6) | 192,893 |
C42.16(C2×C6) = C3×D4.D4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.16(C2xC6) | 192,894 |
C42.17(C2×C6) = C3×C4⋊2Q16 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 192 | | C4^2.17(C2xC6) | 192,895 |
C42.18(C2×C6) = C3×D4.2D4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.18(C2xC6) | 192,896 |
C42.19(C2×C6) = C3×Q8.D4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.19(C2xC6) | 192,897 |
C42.20(C2×C6) = C3×D4⋊Q8 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.20(C2xC6) | 192,907 |
C42.21(C2×C6) = C3×Q8⋊Q8 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 192 | | C4^2.21(C2xC6) | 192,908 |
C42.22(C2×C6) = C3×D4⋊2Q8 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.22(C2xC6) | 192,909 |
C42.23(C2×C6) = C3×C4.Q16 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 192 | | C4^2.23(C2xC6) | 192,910 |
C42.24(C2×C6) = C3×D4.Q8 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.24(C2xC6) | 192,911 |
C42.25(C2×C6) = C3×Q8.Q8 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 192 | | C4^2.25(C2xC6) | 192,912 |
C42.26(C2×C6) = C3×C42.28C22 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.26(C2xC6) | 192,922 |
C42.27(C2×C6) = C3×C42.29C22 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.27(C2xC6) | 192,923 |
C42.28(C2×C6) = C3×C42.30C22 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 192 | | C4^2.28(C2xC6) | 192,924 |
C42.29(C2×C6) = C3×C8⋊3D4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.29(C2xC6) | 192,929 |
C42.30(C2×C6) = C3×C8.2D4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.30(C2xC6) | 192,930 |
C42.31(C2×C6) = C3×C8⋊Q8 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 192 | | C4^2.31(C2xC6) | 192,934 |
C42.32(C2×C6) = C3×C23.32C23 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.32(C2xC6) | 192,1408 |
C42.33(C2×C6) = C3×C23.33C23 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.33(C2xC6) | 192,1409 |
C42.34(C2×C6) = C3×C23.36C23 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.34(C2xC6) | 192,1418 |
C42.35(C2×C6) = C3×C23.37C23 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.35(C2xC6) | 192,1422 |
C42.36(C2×C6) = C3×C23.38C23 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.36(C2xC6) | 192,1425 |
C42.37(C2×C6) = C3×C22.33C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.37(C2xC6) | 192,1428 |
C42.38(C2×C6) = C3×C22.34C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.38(C2xC6) | 192,1429 |
C42.39(C2×C6) = C3×C22.35C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.39(C2xC6) | 192,1430 |
C42.40(C2×C6) = C3×C22.36C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.40(C2xC6) | 192,1431 |
C42.41(C2×C6) = C3×C23.41C23 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.41(C2xC6) | 192,1433 |
C42.42(C2×C6) = C3×D4⋊6D4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.42(C2xC6) | 192,1436 |
C42.43(C2×C6) = C3×Q8⋊5D4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.43(C2xC6) | 192,1437 |
C42.44(C2×C6) = C3×D4×Q8 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.44(C2xC6) | 192,1438 |
C42.45(C2×C6) = C3×Q8⋊6D4 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.45(C2xC6) | 192,1439 |
C42.46(C2×C6) = C3×C22.46C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.46(C2xC6) | 192,1441 |
C42.47(C2×C6) = C3×C22.47C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.47(C2xC6) | 192,1442 |
C42.48(C2×C6) = C3×D4⋊3Q8 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.48(C2xC6) | 192,1443 |
C42.49(C2×C6) = C3×C22.49C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.49(C2xC6) | 192,1444 |
C42.50(C2×C6) = C3×C22.50C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.50(C2xC6) | 192,1445 |
C42.51(C2×C6) = C3×Q8⋊3Q8 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 192 | | C4^2.51(C2xC6) | 192,1446 |
C42.52(C2×C6) = C3×Q82 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 192 | | C4^2.52(C2xC6) | 192,1447 |
C42.53(C2×C6) = C3×C22.53C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.53(C2xC6) | 192,1448 |
C42.54(C2×C6) = C3×C22.56C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.54(C2xC6) | 192,1451 |
C42.55(C2×C6) = C3×C22.57C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 96 | | C4^2.55(C2xC6) | 192,1452 |
C42.56(C2×C6) = C3×C22.58C24 | φ: C2×C6/C3 → C22 ⊆ Aut C42 | 192 | | C4^2.56(C2xC6) | 192,1453 |
C42.57(C2×C6) = C6×C8⋊C4 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.57(C2xC6) | 192,836 |
C42.58(C2×C6) = C12×M4(2) | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.58(C2xC6) | 192,837 |
C42.59(C2×C6) = C3×C8○2M4(2) | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.59(C2xC6) | 192,838 |
C42.60(C2×C6) = C3×C42.6C4 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.60(C2xC6) | 192,865 |
C42.61(C2×C6) = C3×C42.7C22 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.61(C2xC6) | 192,866 |
C42.62(C2×C6) = C3×D4⋊C8 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.62(C2xC6) | 192,131 |
C42.63(C2×C6) = C3×Q8⋊C8 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.63(C2xC6) | 192,132 |
C42.64(C2×C6) = C3×C8⋊2C8 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.64(C2xC6) | 192,140 |
C42.65(C2×C6) = C3×C8⋊1C8 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.65(C2xC6) | 192,141 |
C42.66(C2×C6) = C6×C4⋊C8 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.66(C2xC6) | 192,855 |
C42.67(C2×C6) = C3×C4⋊M4(2) | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.67(C2xC6) | 192,856 |
C42.68(C2×C6) = D4×C24 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.68(C2xC6) | 192,867 |
C42.69(C2×C6) = C3×C8⋊6D4 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.69(C2xC6) | 192,869 |
C42.70(C2×C6) = C12×D8 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.70(C2xC6) | 192,870 |
C42.71(C2×C6) = C12×SD16 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.71(C2xC6) | 192,871 |
C42.72(C2×C6) = C12×Q16 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.72(C2xC6) | 192,872 |
C42.73(C2×C6) = C3×C8○D8 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 48 | 2 | C4^2.73(C2xC6) | 192,876 |
C42.74(C2×C6) = Q8×C24 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.74(C2xC6) | 192,878 |
C42.75(C2×C6) = C3×C8⋊4Q8 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.75(C2xC6) | 192,879 |
C42.76(C2×C6) = C3×C4.4D8 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.76(C2xC6) | 192,919 |
C42.77(C2×C6) = C3×C4.SD16 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.77(C2xC6) | 192,920 |
C42.78(C2×C6) = C3×C42.78C22 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.78(C2xC6) | 192,921 |
C42.79(C2×C6) = C3×C8⋊5D4 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.79(C2xC6) | 192,925 |
C42.80(C2×C6) = C3×C8⋊4D4 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.80(C2xC6) | 192,926 |
C42.81(C2×C6) = C3×C4⋊Q16 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.81(C2xC6) | 192,927 |
C42.82(C2×C6) = C3×C8.12D4 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.82(C2xC6) | 192,928 |
C42.83(C2×C6) = C3×C8⋊3Q8 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.83(C2xC6) | 192,931 |
C42.84(C2×C6) = C3×C8.5Q8 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.84(C2xC6) | 192,932 |
C42.85(C2×C6) = C3×C8⋊2Q8 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.85(C2xC6) | 192,933 |
C42.86(C2×C6) = Q8×C2×C12 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.86(C2xC6) | 192,1405 |
C42.87(C2×C6) = C12×C4○D4 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.87(C2xC6) | 192,1406 |
C42.88(C2×C6) = C6×C42.C2 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.88(C2xC6) | 192,1416 |
C42.89(C2×C6) = C6×C4⋊Q8 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.89(C2xC6) | 192,1420 |
C42.90(C2×C6) = C3×C22.26C24 | φ: C2×C6/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.90(C2xC6) | 192,1421 |
C42.91(C2×C6) = C3×C8⋊C8 | central extension (φ=1) | 192 | | C4^2.91(C2xC6) | 192,128 |
C42.92(C2×C6) = C3×C42.12C4 | central extension (φ=1) | 96 | | C4^2.92(C2xC6) | 192,864 |